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Abstract
We use the bi-Hamiltonian structure of the Camassa–Holm equation to
show that its conservation laws Hn[m] are homogeneous with respect to the
scaling m �→ λm. Moreover, a direct argument is presented proving that
H−1,H−2, . . . , are of local character. Finally, simple representations of the
conservation laws in terms of their variational derivatives are derived and used
to obtain a constructive scheme for computation of the Hns.

PACS numbers: 02.30.Jr, 02.30.Ik, 45.20.Jj
Mathematics Subject Classification: 35Q35, 37K45

1. Introduction

The nonlinear dispersive equation

ut − utxx + 3uux = 2uxuxx + uuxxx, x ∈ R, t > 0, (1.1)

first arose in 1981 as an abstract equation admitting a bi-Hamiltonian structure [13]. It was
rediscovered a decade later by Camassa and Holm [2] as a model for the unidirectional
propagation of shallow water waves over a flat bottom, u(x, t) representing the water’s
free surface in non-dimensional variables. Subsequently, equation (1.1) was obtained
independently as a model for nonlinear waves in cylindrical hyperelastic rods [12].
Equation (1.1) is a re-expression of the geodesic flow in the group of compressible
diffeomorphisms of the circle [19, 9, 10] and an infinite-dimensional completely integrable
Hamiltonian system [1, 3, 5, 11, 16]. The equation admits, in addition to smooth waves, a
multitude of travelling wave solutions with singularities—peakons, cuspons, stumpons and
composite waves [2, 17, 18]. It has solutions that are global in time [5] as well as solutions
modelling wave breaking [4, 7, 8]. Associated with (1.1) there is a whole hierarchy of
integrable equations [15].

Introducing the momentum m = u − uxx , equation (1.1) can be expressed as a bi-
Hamiltonian system [2]

mt = EδH1[m] = DδH2[m],
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with Hamiltonians

H1[m] = 1

2

∫
mu dx, H2[m] = 1

2

∫ (
u3 + uu2

x

)
dx,

and corresponding operators

D = −(
Dx − D3

x

)
, E = −(mDx + Dxm).

Accordingly, a recursive argument gives rise to an infinite sequence of quantities

. . . , H−2[m],H−1[m],H0[m],H1[m],H2[m],H3[m], . . . ,

conserved under the flow of (1.1).
As the expressions for the Hns rapidly get very involved, except for the simplest cases,

their structure is largely unknown. One question that has attracted interested is the local or
non-local nature of the functionals.

Considering an ‘associated Camassa–Holm equation’, it was shown in [14] that
equation (1.1) admits an infinite sequence of both local and non-local conservation laws. It
was conjectured that the conservation laws H−1,H−2, . . . are all local. By a different method
(showing that (1.1) describes pseudo-spherical surfaces and expanding the corresponding
quadratic pseudo-potential in power series), this conjecture was proved in [21].

In this paper, we give a direct argument using the bi-Hamiltonian structure to show that
H−1,H−2, . . . are of local character.

Furthermore, we show that all the Hns are homogeneous in the sense that

Hn[λm] = λn+1Hn[m], λ ∈ R, n = 0, 1, 2, . . . , (1.2)

and

H−n[λm] = λ3/2−nH−n[m], λ ∈ R, n = 1, 2, . . . . (1.3)

We also establish the interesting identities

Hn[m] = 1

n + 1

∫
mδHn[m] dx, n = 0, 1, 2, . . . , (1.4)

and

H−n[m] = 1

3/2 − n

∫
mδH−n[m] dx, n = 1, 2, . . . . (1.5)

where δHn[m] denotes the variational derivative of Hn. Using these formulae, we obtain a
constructive scheme for computing the Hns. As an application, we derive explicit expressions
for the conservation laws H−3 and H−4.

Section 2 reviews some notation and definitions. In section 3, we consider conservation
laws of (1.1). Lowering and raising of the Hns is studied in sections 4 and 5, respectively.
Finally, in section 6 we present the algorithm for computation of the conservation laws.

2. Preliminaries

2.1. Functionals

For an integer n � 1, we let Hn be the Sobolev space of all square integrable functions f ∈ L2

with distributional derivatives ∂i
xf ∈ L2 for i = 1, . . . , n.

We will work in some function space X ⊂ L2. Typically X is some Sobolev space or the
Schwartz space of rapidly decreasing functions. X could consist of either periodic functions
or functions on the real line with sufficient decay at infinity—what is important is that the
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boundary terms vanish when integrating by parts. We let x be the independent variable and
m, v ∈ X be functions. Total differentiation with respect to x will be denoted by Dx .

Let F : X → R be a functional. Suppose the directional derivative

d

dε

∣∣∣∣
ε=0

F [m + εv], m, v ∈ X

defines a continuous linear functional of v ∈ X for every fixed m ∈ X. If this linear functional
can be expressed as a scalar product inherited from L2,

d

dε

∣∣∣∣
ε=0

F [m + εv] =
∫

δF [m] · v dx, m, v ∈ X,

we call δF [m] the variational derivative of F at m.
A differential function P is a smooth function of x,m and derivatives of m up to some

finite order. We write

P [m] = P(x,m,mx,mxx, . . .).

Note that the value of P [m] at x may depend only on the value of m and its derivatives evaluated
at the point x. A local functional is a mapping of the form

m �→
∫

P [m] dx,

for some differential function P [m].
Let P [m] be a differential function. The Fréchet derivative of P is the differential operator

DP defined by

DP (Q) = d

dε

∣∣∣∣
ε=0

P [m + εQ[m]],

for any differential function Q[m]. The Fréchet derivative of a differential function always
exists (see [20]).

The Euler operator is given by

E = ∂

∂m
− Dx

∂

∂mx

+ D2
x

∂

∂mxx

− D3
x

∂

∂mxxx

+ · · · . (2.1)

For a local functional F [m] = ∫
L[m] dx we have the basic equality

δF [m] = E(L).

2.2. Hamiltonian structure

A linear operator D on X is Hamiltonian if its bi-linear Poisson bracket defined by

{F,H } =
∫

δF · DδH dx,

is skew-symmetric

{F,H } = −{H,F }
and satisfies the Jacobi identity

{{F,G},H } + {{G,H }, F } + {{H,F },G} = 0.

Note that the Poisson bracket of two functionals is a new functional

{F,H }[m] =
∫

δF [m] · DδH [m] dx.
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Two Hamiltonian operatorsD and E are compatible if their sumD + E is still a Hamiltonian
operator. A differential operator D is nondegenerate if there is no nonzero differential operator
D̃ such that D̃ · D ≡ 0. In the scalar case, every differential operator is nondegenerate (see
[20]). The following lemma will prove useful when we construct conservation laws.

Lemma 1 (lemma 7.25 in [20]). Assume that D and E are compatible Hamiltonian operators
with D nondegenerate. If the differential functions Q1,Q2 and Q3 satisfy

EQ1 = DQ2, EQ2 = DQ3,

and there are local functionals F1 and F2 such that Q1 = δF1 and Q2 = δF2, then the Fréchet
derivative DQ3 is self-adjoint with respect to (·, ·)L2 .

Suppose u ∈ X is a solution of (1.1) at a fixed time t. We let m = u − uxx . Since
1 − D2

x is an isomorphism between Sobolev spaces, Hn+2 → Hn, we see that u and m are in
a one-to-one correspondence.

Henceforth, we let D and E be the operators

D = −(
Dx − D3

x

)
, E = −(mDx + Dxm).

D and E are compatible Hamiltonian operators (cf [6]). The Camassa–Holm equation is
bi-Hamiltonian with the Hamiltonians

H1[m] = 1

2

∫
mu dx, H2[m] = 1

2

∫ (
u3 + uu2

x

)
dx, (2.2)

and the corresponding operators E,D. More precisely, equation (1.1) can be written as either

mt = EδH1[m],

or

mt = DδH2[m].

The integrals in (2.2) are to be interpreted in the following sense: for a function m ∈ X the
values of H1 and H2 at m are obtained by replacing u by

(
1 − D2

x

)−1
m inside the integrals

before computing them. We stress that H1 and H2 are viewed as functionals of m and not of u.
The fact that they can be considered as functionals of both u and m can easily cause confusion
if one is not careful. For example, the variational derivatives of the mappings u �→ 1

2

∫
mu dx

and m �→ 1
2

∫
mu dx are different. Moreover, H1 and H2 are local as functionals of u, but not

as functionals of m.
If two functionals F0 and F1 satisfy

EδF0 = DδF1,

then we say that F0 raises to F1 or that F1 lowers to F0: in symbols F0 ↑ F1 or F1 ↓ F0.

3. Conservation laws

The conservation laws for equation (1.1) are constructed as a sequence

· · · ↑ H−1 ↑ H0 ↑ H1 ↑ H2 ↑ H3 ↑ · · · .
Using the bi-Hamiltonian structure it is easy to prove that all functionals in this series are
conserved under the flow of (1.1) (see [20] for a proof in the general case of a bi-Hamiltonian
structure, and [6] for the special case of the Camassa–Holm equation).
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The first few conservation laws in this sequence are

H−2[m] = − 1

16

∫ (
4√
m

+
m2

x

m5/2

)
dx, δH−2[m] = 1

8m3/2
+

mxx

8m5/2
− 5m2

x

32m7/2
,

H−1[m] =
∫ √

m dx, δH−1[m] = 1

2
√

m
,

H0[m] =
∫

m dx, δH0[m] = 1,

H1[m] = 1

2

∫
mu dx, δH1[m] = u,

H2[m] = 1

2

∫ (
u3 + uu2

x

)
dx, δH2[m] = (

1 − D2
x

)−1
(

3

2
u2 − 1

2
u2

x − uuxx

)
.

We see that

H−2[m] = −2
∫

mδH−2[m] dx, δH−2[λm] = λ−3/2δH−2[m],

H−1[m] = 2
∫

mδH−1[m] dx, δH−1[λm] = λ−1/2δH−1[m],

H0[m] =
∫

mδH0[m] dx, δH0[λm] = δH0[m],

H1[m] = 1

2

∫
mδH1[m] dx, δH1[λm] = λδH1[m],

H2[m] = 1

3

∫
mδH2[m] dx, δH2[λm] = λ2δH2[m].

Therefore, it comes as no surprise when we prove that in general

δHn[λm] = λnδHn[m], n = 0, 1, 2, . . . ,

δH−n[λm] = λ1/2−nδH−n[m], n = 1, 2, . . . ,

and

Hn[m] = 1

n + 1

∫
mδHn[m] dx, n = 0, 1, 2, . . . ,

H−n[m] = 1

3/2 − n

∫
mδH−n[m] dx, n = 1, 2, . . . .

We will consider in turn the two cases of lowering and raising.

4. Lowering

We first need to describe the inverse of the Hamiltonian operator E = −(mDx + Dxm).

Lemma 2. We have

E−1 = − 1

2
√

m
D−1

x

1√
m

.

Proof. Differentiation shows that for a function f

−E
1

2
√

m
D−1

x

(
f√
m

)
= (mDx + Dxm)

1

2
√

m
D−1

x

(
f√
m

)
= f. �
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The occurrence of D−1
x in the expression for E−1 makes E−1f defined only modulo

functions of the form c√
m

, c ∈ R. For simplicity, whenever D−1
x appears, we will choose the

integration constant c to be zero.

Remark 1. The convention to take c = 0 does not make sense in the case of general functions:
should one choose D−1

x (2 sin x cos x) = sin2 x or D−1
x (2 sin x cos x) = − cos2 x?1 However,

consider the class M of differential functions with no constant term and with no explicit
dependence on x. If P [m] = P(m,mx,mxx, . . .) ∈ M is the total x-derivative of a differential
function, then there is a unique R[m] ∈ M such that DxR[m] = P [m]. Indeed, suppose
R1[m], R2[m] ∈ M satisfy DxR1[m] = DxR2[m] = P [m]. Then R1[m] = R2[m] + c for
some constant c (see [20]). By assumption R1[m] contains no constant term. Moreover, since
R2[m] ∈ M, c cannot be cancelled by terms in R2[m]. We conclude that c = 0 so that
R1[m] = R2[m]. This proves uniqueness.

To prove existence we note that any explicit x-dependence in a differential function
R[m] gives rise to a constant term or an explicit x-dependence in DxR[m]. Therefore, if
DxR[m] = P [m] for some P [m] ∈ M, R[m] cannot depend explicitly on x. Furthermore,
discarding the possibly nonzero constant term of R[m], we obtain a differential function in M
with total x-derivative P [m]. This proves existence.

In the following D−1
x will only be applied to differential functions P [m] in the class M.

We define D−1
x P [m] to be the unique R[m] ∈ M satisfying DxR[m] = P [m].

To describe the domain of definition of E−1 we use the following lemma. Recall
definition (2.1) of the Euler operator E.

Lemma 3 (theorem 4.7 in [20]). A differential function L[m] satisfies the Euler–Lagrange
equations E(L) = 0 identically for all x,m, if and only if L = DxP , for some differential
function P [m].

If F [m] = ∫
P [m] dx ≡ 0, then δF [m] = E(P ) ≡ 0. Thus, we get the following

consequence of lemma 3.

Lemma 4. If a differential function P [m] satisfies∫
P [m] dx = 0,

for all m, then P is the total x-derivative P = DxR of some differential function R[m].

Observe that lemma 4 says that P [m] = DxR[m] for all m. This is much deeper than the
corresponding result for ordinary functions f of one real variable2.

The proof that lowering is unobstructed and produces local conservation laws rests on the
following lemma.

Lemma 5. Let Q−1 = δH−1 = 1
2
√

m
. For each n � 1,

R−n[m] = 1√
m
D(E−1D)n−1Q−1

1 We thank the referees for this observation.
2 If

∫
f dx = 0, then clearly g(x) = ∫ x

−∞ f dx satisfies Dxg = f and the required boundary conditions. However,
even if

∫
P [m] dx = 0 for all m, it is far from obvious that there is a differential function R[m] such that

P [m] = DxR[m] for all m: the definition R[m](x) = ∫ x

−∞ P [m] dx could very well necessitate a different R
for different ms.
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is the total x-derivative of a differential function. Hence, we may recursively define

Q−n−1 = E−1DQ−n = − 1

2
√

m
D−1

x R−n.

Moreover, the differential functions Q−n satisfy

Q−n[λm] = λ1/2−nQ−n[m]. (4.1)

Proof. Both D and E−1 are skew-adjoint operators, so that (DE−1)∗ = E−1D. We infer that∫
R−n[m] dx =

∫
1√
m

· D(E−1D)n−1Q−1 dx = 1

2

∫
1√
m

· (DE−1)n−1D
1√
m

dx

= −1

2

∫
D(E−1D)n−1

(
1√
m

)
· 1√

m
dx = −

∫
R−n[m] dx.

Hence,
∫

R−n[m] dx = 0. Therefore, in view of lemma 4, if R−n[m] is a differential function,
then

Q−n−1 = 1√
m

D−1
x R−n,

is a differential function. But then also

R−n−1 = 1√
m
DQ−n−1

is a differential function. Since R−1[m] is clearly a differential function, the first half of the
lemma follows by induction.

Now suppose

Q−j [λm] = λ1/2−jQ−j [m],

holds for j = n. Then,

Q−n−1[λm] = E−1DQ−n[λm] = − 1

2
√

λm
D−1

x

1√
λm

D(λ1/2−nQ−n[m])

= −λ1/2−n−1 1

2
√

m
D−1

x

1√
m
DQ−n[m] = λ1/2−n−1Q−n−1[m].

Since

Q−1[λm] = λ−1/2Q−1[m],

an induction argument shows (4.1) for all n � 1. �

Now we know that there exist differential functions Q−n such that

Q−1 = δH−1, EQ−n−1 = DQ−n, n � 1,

we may define local functionals H−n by

H−n[m] = 1

3/2 − n

∫
mQ−n[m] dx.

We compute

d

dε

∣∣∣∣
ε=0

H−n[m + εη] = 1

3/2 − n

d

dε

∣∣∣∣
ε=0

∫
(m + εη)Q−n[m + εη] dx

= 1

3/2 − n

(∫
ηQ−n[m] dx +

∫
mDQ−n

(η) dx

)
.
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Since Q−1 and Q−2 are variational derivatives of functionals, an induction argument
together with lemma 1 show that the Fréchet derivatives DQ−n

are self-adjoint for all n � 1.
Hence,

d

dε

∣∣∣∣
ε=0

H−n[m + εη] = 1

3/2 − n

∫
η(Q−n[m] + DQ−n

(m)) dx. (4.2)

Moreover, since Q−n[λm] = λ1/2−nQ−n[m] by lemma 5, we obtain

DQ−n
(m) = d

dε

∣∣∣∣
ε=0

Q−n[m + εm] = d

dε

∣∣∣∣
ε=0

(1 + ε)1/2−nQ−n[m] = (1/2 − n)Q−n[m].

Thus, (4.2) gives,

δH−n[m] = 1

3/2 − n
(Q−n[m] + DQ−n

(m)) = Q−n[m].

This proves the following result.

Theorem 1. Lowering of the Hns is unobstructed for the Camassa–Holm equation, i.e., there
are H−1,H−2, . . . , such that H−1 ↓ H−2 ↓ . . . . Moreover, H−1,H−2, . . . are local functionals
and satisfy

H−n[m] = 1

3/2 − n

∫
mδH−n[m] dx, n = 1, 2, . . . ,

δH−n[λm] = λ1/2−nδH−n[m], n = 1, 2, . . . .

5. Raising

Since
(
1 − D2

x

)−1
is an isomorphism between Sobolev spaces, Hk → Hk+2, we see that

D−1f = (
1 − D2

x

)−1
D−1

x f is well-defined whenever f is an x-derivative.

Lemma 6. Let Q0 = δH0 = 1. For each n � 0, E(D−1E)nQ0 is an x-derivative. Hence, we
may recursively define

Qn+1 = D−1EQn.

Moreover,

Qn[λm] = λnQn[m], n = 0, 1, 2, . . . . (5.1)

Proof. First observe that E and D−1 are skew-symmetric operators and that (ED−1)∗ = D−1E .

This yields ∫
E(D−1E)nQ0 dx =

∫
(ED−1)nE(1) · 1 dx = −

∫
1 · E(D−1E)n(1) · 1 dx

= −
∫

E(D−1E)nQ0 dx.

We conclude that∫
E(D−1E)nQ0 dx = 0,

so that

f (x) =
∫ x

E(D−1E)nQ0 dx,

satisfies the right boundary conditions and Dxf = E(D−1E)nQ0.
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To show (5.1) we proceed by induction on n. Assume Qn[λm] = λnQn[m] holds. Then,

Qn+1[λm] = D−1EQn[λm] = (
1 − D2

x

)−1
D−1

x (λmDx + Dxλm)(λnQn[m])

= λn+1
(
1 − D2

x

)−1
D−1

x (mDx + Dxm)Qn[m] = λn+1Qn+1[m].

Since (5.1) obviously holds for n = 0, this shows (5.1) for all n � 0 and completes the
proof. �

Lemma 6 shows existence of Qn such that

Q0 = δH0, EQn = DQn+1, n � 0,

so that we may define

Hn[m] = 1

n + 1

∫
mQn[m] dx, n = 0, 1, 2, . . . . (5.2)

If the Fréchet derivative DQn
were self-adjoint we would proceed just like in the case of the

lowering to deduce that δHn[m] = Qn[m]. This would show that raising is unobstructed.
However, since the Qns are non-local expressions for n � 3, we cannot immediately apply
lemma 1 or the theory from [20] to infer self-adjointness. This technical problem is usually
ignored.

At any rate, if there is a functional Hn with variational derivative δHn = Qn, then
DQn

= DδHn
is self-adjoint so that Hn is given by (5.2). We can therefore state the following

theorem.

Theorem 2. Whenever the functionals Hn exist, it holds that

Hn[λm] = λn+1Hn[m], n = 0, 1, 2, . . . ,

and

Hn[m] = 1

n + 1

∫
mδHn[m] dx, n = 0, 1, 2, . . . .

�

6. Algorithm

In this section, we use the previously derived identities to obtain a constructive algorithm for
computing the Hns.

6.1. Lowering

In view of theorem 1, we have

H−n[m] = 1

3/2 − n

∫
mδH−n[m] dx, n = 1, 2, . . . . (6.1)

Using that

δH−n[m] = E−1DδH−n+1[m] = − 1

2
√

m
D−1

x

(
DδH−n+1[m]√

m

)
,

we obtain

δH−n[m] = 1

2
√

m

∫ x

0

(
Dx − D3

x

)
δH−n+1[m]√
m

dξ. (6.2)
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Formula (6.2) provides an explicit recursive algorithm for the computation of the δH−ns.
Once δH−n[m] is known, H−n[m] is obtained from (6.1). To exemplify the approach we
construct the conservation laws H−3 and H−4.

We first use the integration by parts formula D−1
x (uvx) = uv − D−1

x (uxv) twice in the
expression

δH−3[m] = 1

2
√

m
D−1

x

((
Dx − D3

x

)
δH−2[m]√

m

)

to get

δH−3[m] = 1

2
√

m

[
1√
m

(
1 − D2

x

)
δH−2[m] +

(
1√
m

)
x

(δH−2[m])x

−D−1
x

((
1√
m

)
x

δH−2[m] +

(
1√
m

)
xx

(
δH−2[m]

)
x

)]
.

Now since

δH−2[m] = 1

8m3/2
+

mxx

8m5/2
− 5m2

x

32m7/2
,

a long but straightforward3 computation yields

δH−3[m] = 3

64m5/2
+

5mxx

32m7/2
− 35m2

x

128m9/2
− mxxxx

16m7/2

+
7mxmxxx

16m9/2
− 231m2

xmxx

128m11/2
+

21m2
xx

64m9/2
+

1155m4
x

1024m13/2
.

From (6.1) we get

H−3[m] = −2

3

∫
mδH−3[m] dx = −

∫ (
1

32m3/2
+

5mxx

48m5/2
− 35m2

x

192m7/2
− mxxxx

24m5/2

+
7mxmxxx

24m7/2
− 77m2

xmxx

64m9/2
+

7m2
xx

32m7/2
+

385m4
x

512m11/2

)
dx.

After some integrations by parts, we arrive at

H−3[m] = −
∫ (

1

32m3/2
+

5m2
x

64m7/2
+

m2
xx

32m7/2
+

35m4
x

512m11/2

)
dx.

Repeating the same steps again with δH−2[m] replaced by δH−3[m], we obtain

δH−4[m] = 5

256m7/2
+

1419mxmxxmxxx

128m13/2
+

mxxxxxx

32m9/2
− 7mxxxx

64m9/2
− 425 425m6

x

16 384m19/2

+
15 015m4

x

4096m15/2
+

35mxx

256m9/2
− 315m2

x

1024m11/2
+

189m2
xx

256m11/2
+

671m3
xx

256m13/2
− 69m2

xxx

128m11/2

− 35 607m2
xm

2
xx

1024m15/2
+

255 255m4
xmxx

4096m17/2
− 2145m3

xmxxx

128m15/2
+

825m2
xmxxxx

256m13/2

− 2541m2
xmxx

512m13/2
− 57mxxmxxxx

64m11/2
+

63mxmxxx

64m11/2
− 27mxmxxxxx

64m11/2
.

3 To find the primitive function of

R[m] =
(

1√
m

)
x

δH−2[m] +

(
1√
m

)
xx

(δH−2[m])x

we first compensate for the highest order derivatives and then progressively work our way down. Since R[m] is the
total x-derivative of a differential function by theorem 1, this procedure will stop and produce the right result.
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Hence, (6.1) gives after integrating by parts

H−4[m] = −
∫ (

1

128m5/2
+

35m2
x

512m9/2
+

7m2
xx

128m9/2
+

m2
xxx

64m9/2
− 105m2

xmxx

1024m11/2

+
m3

xx

256m11/2
+

21mxmxxmxxx

128m11/2
+

5005m4
xmxx

12288m15/2

)
dx.

These computations, although very laborious, could clearly be continued to produce
explicit expressions for H−5,H−6, etc.

6.2. Raising

By theorem 2 we have

Hn[m] = 1

n + 1

∫
mδHn[m] dx, n = 0, 1, 2, . . . . (6.3)

Since

δHn[m] = D−1EδHn−1[m] = (
1 − D2

x

)−1
D−1

x (mDx + Dxm)δHn−1[m],

we find that

δHn[m] = (
1 − D2

x

)−1
∫ x

0
(2m(δHn−1[m])x + mxδHn−1[m]) dξ.

Moreover,

(
1 − D2

x

)−1
f (x) = (p ∗ f )(x) =

∫
p(x − y)f (y) dy,

where, if we are on the line,

p(x) = 1
2 e−|x|, x ∈ R,

or

p(x) = cosh(1/2 − x)

2 sinh 1/2
, x ∈ [0, 1),

for the period one case. Therefore,

δHn[m] =
∫

p(x − y)

∫ y

0
(2m(δHn−1[m])x + mxδHn−1[m]) dξ dy. (6.4)

This formula gives a recursive scheme to compute the δHns. Since the functionals become
non-local for n � 3, the algorithm does not produce as explicit formulae as in the case of
lowering. Nevertheless, starting with for example δH2[m] = (

1 −D2
x

)−1( 3
2u2 − 1

2u2
x −uuxx

)
,

the scheme can be implemented numerically to yield δH3, δH4, etc. Once δHn[m] is known,
the value of Hn[m] is obtained from (6.3). Note that this last step assumes the existence of the
functionals Hn[m], n � 4, even though this was never rigorously proved (cf the remark at the
end of section 5).
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