Conservation laws of the Camassa-Holm equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2005 J. Phys. A: Math. Gen. 38869
(http://iopscience.iop.org/0305-4470/38/4/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.94
The article was downloaded on 03/06/2010 at 03:58

Please note that terms and conditions apply.

Conservation laws of the Camassa-Holm equation

Jonatan Lenells
Department of Mathematics, Lund University, PO Box 118, 22100 Lund, Sweden
E-mail: jonatan@maths.lth.se

Received 23 June 2004, in final form 22 November 2004
Published 12 January 2005
Online at stacks.iop.org/JPhysA/38/869

Abstract

We use the bi-Hamiltonian structure of the Camassa-Holm equation to show that its conservation laws $H_{n}[m]$ are homogeneous with respect to the scaling $m \mapsto \lambda m$. Moreover, a direct argument is presented proving that H_{-1}, H_{-2}, \ldots, are of local character. Finally, simple representations of the conservation laws in terms of their variational derivatives are derived and used to obtain a constructive scheme for computation of the $H_{n} \mathrm{~s}$.

PACS numbers: 02.30.Jr, 02.30.Ik, 45.20.Jj
Mathematics Subject Classification: 35Q35, 37K45

1. Introduction

The nonlinear dispersive equation

$$
\begin{equation*}
u_{t}-u_{t x x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}, \quad x \in \mathbb{R}, \quad t>0 \tag{1.1}
\end{equation*}
$$

first arose in 1981 as an abstract equation admitting a bi-Hamiltonian structure [13]. It was rediscovered a decade later by Camassa and Holm [2] as a model for the unidirectional propagation of shallow water waves over a flat bottom, $u(x, t)$ representing the water's free surface in non-dimensional variables. Subsequently, equation (1.1) was obtained independently as a model for nonlinear waves in cylindrical hyperelastic rods [12]. Equation (1.1) is a re-expression of the geodesic flow in the group of compressible diffeomorphisms of the circle $[19,9,10]$ and an infinite-dimensional completely integrable Hamiltonian system [1, 3, 5, 11, 16]. The equation admits, in addition to smooth waves, a multitude of travelling wave solutions with singularities-peakons, cuspons, stumpons and composite waves [2, 17, 18]. It has solutions that are global in time [5] as well as solutions modelling wave breaking [4, 7, 8]. Associated with (1.1) there is a whole hierarchy of integrable equations [15].

Introducing the momentum $m=u-u_{x x}$, equation (1.1) can be expressed as a biHamiltonian system [2]

$$
m_{t}=\mathcal{E} \delta H_{1}[m]=\mathcal{D} \delta H_{2}[m],
$$

with Hamiltonians

$$
H_{1}[m]=\frac{1}{2} \int m u \mathrm{~d} x, \quad H_{2}[m]=\frac{1}{2} \int\left(u^{3}+u u_{x}^{2}\right) \mathrm{d} x
$$

and corresponding operators

$$
\mathcal{D}=-\left(D_{x}-D_{x}^{3}\right), \quad \mathcal{E}=-\left(m D_{x}+D_{x} m\right)
$$

Accordingly, a recursive argument gives rise to an infinite sequence of quantities

$$
\ldots, H_{-2}[m], H_{-1}[m], H_{0}[m], H_{1}[m], H_{2}[m], H_{3}[m], \ldots,
$$

conserved under the flow of (1.1).
As the expressions for the $H_{n} \mathrm{~s}$ rapidly get very involved, except for the simplest cases, their structure is largely unknown. One question that has attracted interested is the local or non-local nature of the functionals.

Considering an 'associated Camassa-Holm equation', it was shown in [14] that equation (1.1) admits an infinite sequence of both local and non-local conservation laws. It was conjectured that the conservation laws H_{-1}, H_{-2}, \ldots are all local. By a different method (showing that (1.1) describes pseudo-spherical surfaces and expanding the corresponding quadratic pseudo-potential in power series), this conjecture was proved in [21].

In this paper, we give a direct argument using the bi-Hamiltonian structure to show that H_{-1}, H_{-2}, \ldots are of local character.

Furthermore, we show that all the H_{n} s are homogeneous in the sense that

$$
\begin{equation*}
H_{n}[\lambda m]=\lambda^{n+1} H_{n}[m], \quad \lambda \in \mathbb{R}, \quad n=0,1,2, \ldots, \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{-n}[\lambda m]=\lambda^{3 / 2-n} H_{-n}[m], \quad \lambda \in \mathbb{R}, \quad n=1,2, \ldots \tag{1.3}
\end{equation*}
$$

We also establish the interesting identities

$$
\begin{equation*}
H_{n}[m]=\frac{1}{n+1} \int m \delta H_{n}[m] \mathrm{d} x, \quad n=0,1,2, \ldots, \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{-n}[m]=\frac{1}{3 / 2-n} \int m \delta H_{-n}[m] \mathrm{d} x, \quad n=1,2, \ldots \tag{1.5}
\end{equation*}
$$

where $\delta H_{n}[m]$ denotes the variational derivative of H_{n}. Using these formulae, we obtain a constructive scheme for computing the H_{n} s. As an application, we derive explicit expressions for the conservation laws H_{-3} and H_{-4}.

Section 2 reviews some notation and definitions. In section 3, we consider conservation laws of (1.1). Lowering and raising of the H_{n} s is studied in sections 4 and 5, respectively. Finally, in section 6 we present the algorithm for computation of the conservation laws.

2. Preliminaries

2.1. Functionals

For an integer $n \geqslant 1$, we let H^{n} be the Sobolev space of all square integrable functions $f \in L^{2}$ with distributional derivatives $\partial_{x}^{i} f \in L^{2}$ for $i=1, \ldots, n$.

We will work in some function space $X \subset L^{2}$. Typically X is some Sobolev space or the Schwartz space of rapidly decreasing functions. X could consist of either periodic functions or functions on the real line with sufficient decay at infinity-what is important is that the
boundary terms vanish when integrating by parts. We let x be the independent variable and $m, v \in X$ be functions. Total differentiation with respect to x will be denoted by D_{x}.

Let $F: X \rightarrow \mathbb{R}$ be a functional. Suppose the directional derivative

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} F[m+\epsilon v], \quad m, v \in X
$$

defines a continuous linear functional of $v \in X$ for every fixed $m \in X$. If this linear functional can be expressed as a scalar product inherited from L^{2},

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} F[m+\epsilon v]=\int \delta F[m] \cdot v \mathrm{~d} x, \quad m, v \in X
$$

we call $\delta F[m]$ the variational derivative of F at m.
A differential function P is a smooth function of x, m and derivatives of m up to some finite order. We write

$$
P[m]=P\left(x, m, m_{x}, m_{x x}, \ldots\right)
$$

Note that the value of $P[m]$ at x may depend only on the value of m and its derivatives evaluated at the point x. A local functional is a mapping of the form

$$
m \mapsto \int P[m] \mathrm{d} x
$$

for some differential function $P[m]$.
Let $P[m]$ be a differential function. The Fréchet derivative of P is the differential operator D_{P} defined by

$$
D_{P}(Q)=\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} P[m+\epsilon Q[m]],
$$

for any differential function $Q[m]$. The Fréchet derivative of a differential function always exists (see [20]).

The Euler operator is given by

$$
\begin{equation*}
\mathbf{E}=\frac{\partial}{\partial m}-D_{x} \frac{\partial}{\partial m_{x}}+D_{x}^{2} \frac{\partial}{\partial m_{x x}}-D_{x}^{3} \frac{\partial}{\partial m_{x x x}}+\cdots . \tag{2.1}
\end{equation*}
$$

For a local functional $F[m]=\int L[m] \mathrm{d} x$ we have the basic equality

$$
\delta F[m]=\mathbf{E}(L)
$$

2.2. Hamiltonian structure

A linear operator \mathcal{D} on X is Hamiltonian if its bi-linear Poisson bracket defined by

$$
\{F, H\}=\int \delta F \cdot \mathcal{D} \delta H \mathrm{~d} x
$$

is skew-symmetric

$$
\{F, H\}=-\{H, F\}
$$

and satisfies the Jacobi identity

$$
\{\{F, G\}, H\}+\{\{G, H\}, F\}+\{\{H, F\}, G\}=0
$$

Note that the Poisson bracket of two functionals is a new functional

$$
\{F, H\}[m]=\int \delta F[m] \cdot \mathcal{D} \delta H[m] \mathrm{d} x
$$

Two Hamiltonian operators \mathcal{D} and \mathcal{E} are compatible if their $\operatorname{sum} \mathcal{D}+\mathcal{E}$ is still a Hamiltonian operator. A differential operator \mathcal{D} is nondegenerate if there is no nonzero differential operator $\tilde{\mathcal{D}}$ such that $\tilde{\mathcal{D}} \cdot \mathcal{D} \equiv 0$. In the scalar case, every differential operator is nondegenerate (see [20]). The following lemma will prove useful when we construct conservation laws.

Lemma 1 (lemma 7.25 in [20]). Assume that \mathcal{D} and \mathcal{E} are compatible Hamiltonian operators with \mathcal{D} nondegenerate. If the differential functions Q_{1}, Q_{2} and Q_{3} satisfy

$$
\mathcal{E} Q_{1}=\mathcal{D} Q_{2}, \quad \mathcal{E} Q_{2}=\mathcal{D} Q_{3}
$$

and there are local functionals F_{1} and F_{2} such that $Q_{1}=\delta F_{1}$ and $Q_{2}=\delta F_{2}$, then the Fréchet derivative $D_{Q_{3}}$ is self-adjoint with respect to $(\cdot, \cdot)_{L^{2}}$.

Suppose $u \in X$ is a solution of (1.1) at a fixed time t. We let $m=u-u_{x x}$. Since $1-D_{x}^{2}$ is an isomorphism between Sobolev spaces, $H^{n+2} \rightarrow H^{n}$, we see that u and m are in a one-to-one correspondence.

Henceforth, we let \mathcal{D} and \mathcal{E} be the operators

$$
\mathcal{D}=-\left(D_{x}-D_{x}^{3}\right), \quad \mathcal{E}=-\left(m D_{x}+D_{x} m\right)
$$

\mathcal{D} and \mathcal{E} are compatible Hamiltonian operators (cf [6]). The Camassa-Holm equation is bi-Hamiltonian with the Hamiltonians

$$
\begin{equation*}
H_{1}[m]=\frac{1}{2} \int m u \mathrm{~d} x, \quad H_{2}[m]=\frac{1}{2} \int\left(u^{3}+u u_{x}^{2}\right) \mathrm{d} x, \tag{2.2}
\end{equation*}
$$

and the corresponding operators \mathcal{E}, \mathcal{D}. More precisely, equation (1.1) can be written as either

$$
m_{t}=\mathcal{E} \delta H_{1}[m],
$$

or

$$
m_{t}=\mathcal{D} \delta H_{2}[m] .
$$

The integrals in (2.2) are to be interpreted in the following sense: for a function $m \in X$ the values of H_{1} and H_{2} at m are obtained by replacing u by $\left(1-D_{x}^{2}\right)^{-1} m$ inside the integrals before computing them. We stress that H_{1} and H_{2} are viewed as functionals of m and not of u. The fact that they can be considered as functionals of both u and m can easily cause confusion if one is not careful. For example, the variational derivatives of the mappings $u \mapsto \frac{1}{2} \int m u \mathrm{~d} x$ and $m \mapsto \frac{1}{2} \int m u \mathrm{~d} x$ are different. Moreover, H_{1} and H_{2} are local as functionals of u, but not as functionals of m.

If two functionals F_{0} and F_{1} satisfy

$$
\mathcal{E} \delta F_{0}=\mathcal{D} \delta F_{1},
$$

then we say that F_{0} raises to F_{1} or that F_{1} lowers to F_{0} : in symbols $F_{0} \uparrow F_{1}$ or $F_{1} \downarrow F_{0}$.

3. Conservation laws

The conservation laws for equation (1.1) are constructed as a sequence

$$
\cdots \uparrow H_{-1} \uparrow H_{0} \uparrow H_{1} \uparrow H_{2} \uparrow H_{3} \uparrow \cdots
$$

Using the bi-Hamiltonian structure it is easy to prove that all functionals in this series are conserved under the flow of (1.1) (see [20] for a proof in the general case of a bi-Hamiltonian structure, and [6] for the special case of the Camassa-Holm equation).

The first few conservation laws in this sequence are
$H_{-2}[m]=-\frac{1}{16} \int\left(\frac{4}{\sqrt{m}}+\frac{m_{x}^{2}}{m^{5 / 2}}\right) \mathrm{d} x, \quad \delta H_{-2}[m]=\frac{1}{8 m^{3 / 2}}+\frac{m_{x x}}{8 m^{5 / 2}}-\frac{5 m_{x}^{2}}{32 m^{7 / 2}}$,
$H_{-1}[m]=\int \sqrt{m} \mathrm{~d} x, \quad \delta H_{-1}[m]=\frac{1}{2 \sqrt{m}}$,
$H_{0}[m]=\int m \mathrm{~d} x, \quad \delta H_{0}[m]=1$,
$H_{1}[m]=\frac{1}{2} \int m u \mathrm{~d} x, \quad \delta H_{1}[m]=u$,
$H_{2}[m]=\frac{1}{2} \int\left(u^{3}+u u_{x}^{2}\right) \mathrm{d} x, \quad \delta H_{2}[m]=\left(1-D_{x}^{2}\right)^{-1}\left(\frac{3}{2} u^{2}-\frac{1}{2} u_{x}^{2}-u u_{x x}\right)$.
We see that

$$
\begin{array}{ll}
H_{-2}[m]=-2 \int m \delta H_{-2}[m] \mathrm{d} x, & \delta H_{-2}[\lambda m]=\lambda^{-3 / 2} \delta H_{-2}[m], \\
H_{-1}[m]=2 \int m \delta H_{-1}[m] \mathrm{d} x, & \delta H_{-1}[\lambda m]=\lambda^{-1 / 2} \delta H_{-1}[m], \\
H_{0}[m]=\int m \delta H_{0}[m] \mathrm{d} x, & \delta H_{0}[\lambda m]=\delta H_{0}[m], \\
H_{1}[m]=\frac{1}{2} \int m \delta H_{1}[m] \mathrm{d} x, & \delta H_{1}[\lambda m]=\lambda \delta H_{1}[m], \\
H_{2}[m]=\frac{1}{3} \int m \delta H_{2}[m] \mathrm{d} x, & \delta H_{2}[\lambda m]=\lambda^{2} \delta H_{2}[m] .
\end{array}
$$

Therefore, it comes as no surprise when we prove that in general

$$
\begin{array}{ll}
\delta H_{n}[\lambda m]=\lambda^{n} \delta H_{n}[m], & n=0,1,2, \ldots, \\
\delta H_{-n}[\lambda m]=\lambda^{1 / 2-n} \delta H_{-n}[m], & n=1,2, \ldots,
\end{array}
$$

and

$$
\begin{array}{ll}
H_{n}[m]=\frac{1}{n+1} \int m \delta H_{n}[m] \mathrm{d} x, & n=0,1,2, \ldots, \\
H_{-n}[m]=\frac{1}{3 / 2-n} \int m \delta H_{-n}[m] \mathrm{d} x, & n=1,2, \ldots
\end{array}
$$

We will consider in turn the two cases of lowering and raising.

4. Lowering

We first need to describe the inverse of the Hamiltonian operator $\mathcal{E}=-\left(m D_{x}+D_{x} m\right)$.
Lemma 2. We have

$$
\mathcal{E}^{-1}=-\frac{1}{2 \sqrt{m}} D_{x}^{-1} \frac{1}{\sqrt{m}}
$$

Proof. Differentiation shows that for a function f

$$
-\mathcal{E} \frac{1}{2 \sqrt{m}} D_{x}^{-1}\left(\frac{f}{\sqrt{m}}\right)=\left(m D_{x}+D_{x} m\right) \frac{1}{2 \sqrt{m}} D_{x}^{-1}\left(\frac{f}{\sqrt{m}}\right)=f
$$

The occurrence of D_{x}^{-1} in the expression for \mathcal{E}^{-1} makes $\mathcal{E}^{-1} f$ defined only modulo functions of the form $\frac{c}{\sqrt{m}}, c \in \mathbb{R}$. For simplicity, whenever D_{x}^{-1} appears, we will choose the integration constant c to be zero.

Remark 1. The convention to take $c=0$ does not make sense in the case of general functions: should one choose $D_{x}^{-1}(2 \sin x \cos x)=\sin ^{2} x$ or $D_{x}^{-1}(2 \sin x \cos x)=-\cos ^{2} x ?^{1}$ However, consider the class \mathcal{M} of differential functions with no constant term and with no explicit dependence on x. If $P[m]=P\left(m, m_{x}, m_{x x}, \ldots\right) \in \mathcal{M}$ is the total x-derivative of a differential function, then there is a unique $R[m] \in \mathcal{M}$ such that $D_{x} R[m]=P[m]$. Indeed, suppose $R_{1}[m], R_{2}[m] \in \mathcal{M}$ satisfy $D_{x} R_{1}[m]=D_{x} R_{2}[m]=P[m]$. Then $R_{1}[m]=R_{2}[m]+c$ for some constant c (see [20]). By assumption $R_{1}[m]$ contains no constant term. Moreover, since $R_{2}[m] \in \mathcal{M}, c$ cannot be cancelled by terms in $R_{2}[m]$. We conclude that $c=0$ so that $R_{1}[m]=R_{2}[m]$. This proves uniqueness.

To prove existence we note that any explicit x-dependence in a differential function $R[m]$ gives rise to a constant term or an explicit x-dependence in $D_{x} R[m]$. Therefore, if $D_{x} R[m]=P[m]$ for some $P[m] \in \mathcal{M}, R[m]$ cannot depend explicitly on x. Furthermore, discarding the possibly nonzero constant term of $R[m]$, we obtain a differential function in \mathcal{M} with total x-derivative $P[m]$. This proves existence.

In the following D_{x}^{-1} will only be applied to differential functions $P[m]$ in the class \mathcal{M}. We define $D_{x}^{-1} P[m]$ to be the unique $R[m] \in \mathcal{M}$ satisfying $D_{x} R[m]=P[m]$.

To describe the domain of definition of \mathcal{E}^{-1} we use the following lemma. Recall definition (2.1) of the Euler operator \mathbf{E}.

Lemma 3 (theorem 4.7 in [20]). A differential function $L[m]$ satisfies the Euler-Lagrange equations $\mathbf{E}(L)=0$ identically for all x, m, if and only if $L=D_{x} P$, for some differential function $P[m]$.

If $F[m]=\int P[m] \mathrm{d} x \equiv 0$, then $\delta F[m]=\mathbf{E}(P) \equiv 0$. Thus, we get the following consequence of lemma 3.

Lemma 4. If a differential function $P[m]$ satisfies

$$
\int P[m] \mathrm{d} x=0
$$

for all m, then P is the total x-derivative $P=D_{x} R$ of some differential function $R[m]$.
Observe that lemma 4 says that $P[m]=D_{x} R[m]$ for all m. This is much deeper than the corresponding result for ordinary functions f of one real variable ${ }^{2}$.

The proof that lowering is unobstructed and produces local conservation laws rests on the following lemma.

Lemma 5. Let $Q_{-1}=\delta H_{-1}=\frac{1}{2 \sqrt{m}}$. For each $n \geqslant 1$,

$$
R_{-n}[m]=\frac{1}{\sqrt{m}} \mathcal{D}\left(\mathcal{E}^{-1} \mathcal{D}\right)^{n-1} Q_{-1}
$$

1 We thank the referees for this observation.
${ }^{2}$ If $\int f \mathrm{~d} x=0$, then clearly $g(x)=\int_{-\infty}^{x} f \mathrm{~d} x$ satisfies $D_{x} g=f$ and the required boundary conditions. However, even if $\int P[m] \mathrm{d} x=0$ for all m, it is far from obvious that there is a differential function $R[m]$ such that $P[m]=D_{x} R[m]$ for all m : the definition $R[m](x)=\int_{-\infty}^{x} P[m] \mathrm{d} x$ could very well necessitate a different R for different $m \mathrm{~s}$.
is the total x-derivative of a differential function. Hence, we may recursively define

$$
Q_{-n-1}=\mathcal{E}^{-1} \mathcal{D} Q_{-n}=-\frac{1}{2 \sqrt{m}} D_{x}^{-1} R_{-n}
$$

Moreover, the differential functions Q_{-n} satisfy

$$
\begin{equation*}
Q_{-n}[\lambda m]=\lambda^{1 / 2-n} Q_{-n}[m] \tag{4.1}
\end{equation*}
$$

Proof. Both \mathcal{D} and \mathcal{E}^{-1} are skew-adjoint operators, so that $\left(\mathcal{D E} \mathcal{E}^{-1}\right)^{*}=\mathcal{E}^{-1} \mathcal{D}$. We infer that

$$
\begin{aligned}
\int R_{-n}[m] \mathrm{d} x & =\int \frac{1}{\sqrt{m}} \cdot \mathcal{D}\left(\mathcal{E}^{-1} \mathcal{D}\right)^{n-1} Q_{-1} \mathrm{~d} x=\frac{1}{2} \int \frac{1}{\sqrt{m}} \cdot\left(\mathcal{D} \mathcal{E}^{-1}\right)^{n-1} \mathcal{D} \frac{1}{\sqrt{m}} \mathrm{~d} x \\
& =-\frac{1}{2} \int \mathcal{D}\left(\mathcal{E}^{-1} \mathcal{D}\right)^{n-1}\left(\frac{1}{\sqrt{m}}\right) \cdot \frac{1}{\sqrt{m}} \mathrm{~d} x=-\int R_{-n}[m] \mathrm{d} x
\end{aligned}
$$

Hence, $\int R_{-n}[m] \mathrm{d} x=0$. Therefore, in view of lemma 4, if $R_{-n}[m]$ is a differential function, then

$$
Q_{-n-1}=\frac{1}{\sqrt{m}} D_{x}^{-1} R_{-n}
$$

is a differential function. But then also

$$
R_{-n-1}=\frac{1}{\sqrt{m}} \mathcal{D} Q_{-n-1}
$$

is a differential function. Since $R_{-1}[m]$ is clearly a differential function, the first half of the lemma follows by induction.

Now suppose

$$
Q_{-j}[\lambda m]=\lambda^{1 / 2-j} Q_{-j}[m],
$$

holds for $j=n$. Then,

$$
\begin{aligned}
Q_{-n-1}[\lambda m] & =\mathcal{E}^{-1} \mathcal{D} Q_{-n}[\lambda m]=-\frac{1}{2 \sqrt{\lambda m}} D_{x}^{-1} \frac{1}{\sqrt{\lambda m}} \mathcal{D}\left(\lambda^{1 / 2-n} Q_{-n}[m]\right) \\
& =-\lambda^{1 / 2-n-1} \frac{1}{2 \sqrt{m}} D_{x}^{-1} \frac{1}{\sqrt{m}} \mathcal{D} Q_{-n}[m]=\lambda^{1 / 2-n-1} Q_{-n-1}[m]
\end{aligned}
$$

Since

$$
Q_{-1}[\lambda m]=\lambda^{-1 / 2} Q_{-1}[m],
$$

an induction argument shows (4.1) for all $n \geqslant 1$.
Now we know that there exist differential functions Q_{-n} such that

$$
Q_{-1}=\delta H_{-1}, \quad \mathcal{E} Q_{-n-1}=\mathcal{D} Q_{-n}, \quad n \geqslant 1
$$

we may define local functionals H_{-n} by

$$
H_{-n}[m]=\frac{1}{3 / 2-n} \int m Q_{-n}[m] \mathrm{d} x
$$

We compute

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} H_{-n}[m+\epsilon \eta] & =\left.\frac{1}{3 / 2-n} \frac{\mathrm{~d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} \int(m+\epsilon \eta) Q_{-n}[m+\epsilon \eta] \mathrm{d} x \\
& =\frac{1}{3 / 2-n}\left(\int \eta Q_{-n}[m] \mathrm{d} x+\int m D_{Q_{-n}}(\eta) \mathrm{d} x\right) .
\end{aligned}
$$

Since Q_{-1} and Q_{-2} are variational derivatives of functionals, an induction argument together with lemma 1 show that the Fréchet derivatives $D_{Q_{-n}}$ are self-adjoint for all $n \geqslant 1$. Hence,

$$
\begin{equation*}
\left.\frac{\mathrm{d}}{\mathrm{~d} \epsilon}\right|_{\epsilon=0} H_{-n}[m+\epsilon \eta]=\frac{1}{3 / 2-n} \int \eta\left(Q_{-n}[m]+D_{Q_{-n}}(m)\right) \mathrm{d} x . \tag{4.2}
\end{equation*}
$$

Moreover, since $Q_{-n}[\lambda m]=\lambda^{1 / 2-n} Q_{-n}[m]$ by lemma 5, we obtain
$D_{Q_{-n}}(m)=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon}\right|_{\epsilon=0} Q_{-n}[m+\epsilon m]=\left.\frac{\mathrm{d}}{\mathrm{d} \epsilon}\right|_{\epsilon=0}(1+\epsilon)^{1 / 2-n} Q_{-n}[m]=(1 / 2-n) Q_{-n}[m]$.
Thus, (4.2) gives,

$$
\delta H_{-n}[m]=\frac{1}{3 / 2-n}\left(Q_{-n}[m]+D_{Q_{-n}}(m)\right)=Q_{-n}[m] .
$$

This proves the following result.
Theorem 1. Lowering of the $H_{n} s$ is unobstructed for the Camassa-Holm equation, i.e., there are H_{-1}, H_{-2}, \ldots, such that $H_{-1} \downarrow H_{-2} \downarrow \ldots$ Moreover, H_{-1}, H_{-2}, \ldots are local functionals and satisfy

$$
\begin{aligned}
& H_{-n}[m]=\frac{1}{3 / 2-n} \int m \delta H_{-n}[m] \mathrm{d} x, \quad n=1,2, \ldots, \\
& \delta H_{-n}[\lambda m]=\lambda^{1 / 2-n} \delta H_{-n}[m], \quad n=1,2, \ldots
\end{aligned}
$$

5. Raising

Since $\left(1-D_{x}^{2}\right)^{-1}$ is an isomorphism between Sobolev spaces, $H^{k} \rightarrow H^{k+2}$, we see that $\mathcal{D}^{-1} f=\left(1-D_{x}^{2}\right)^{-1} D_{x}^{-1} f$ is well-defined whenever f is an x-derivative.

Lemma 6. Let $Q_{0}=\delta H_{0}=1$. For each $n \geqslant 0, \mathcal{E}\left(\mathcal{D}^{-1} \mathcal{E}\right)^{n} Q_{0}$ is an x-derivative. Hence, we may recursively define

$$
Q_{n+1}=\mathcal{D}^{-1} \mathcal{E} Q_{n}
$$

Moreover,

$$
\begin{equation*}
Q_{n}[\lambda m]=\lambda^{n} Q_{n}[m], \quad n=0,1,2, \ldots \tag{5.1}
\end{equation*}
$$

Proof. First observe that \mathcal{E} and \mathcal{D}^{-1} are skew-symmetric operators and that $\left(\mathcal{E D} \mathcal{D}^{-1}\right)^{*}=\mathcal{D}^{-1} \mathcal{E}$. This yields

$$
\begin{aligned}
\int \mathcal{E}\left(\mathcal{D}^{-1} \mathcal{E}\right)^{n} Q_{0} \mathrm{~d} x & =\int\left(\mathcal{E D} \mathcal{D}^{-1}\right)^{n} \mathcal{E}(1) \cdot 1 \mathrm{~d} x=-\int 1 \cdot \mathcal{E}\left(\mathcal{D}^{-1} \mathcal{E}\right)^{n}(1) \cdot 1 \mathrm{~d} x \\
& =-\int \mathcal{E}\left(\mathcal{D}^{-1} \mathcal{E}\right)^{n} Q_{0} \mathrm{~d} x
\end{aligned}
$$

We conclude that

$$
\int \mathcal{E}\left(\mathcal{D}^{-1} \mathcal{E}\right)^{n} Q_{0} \mathrm{~d} x=0
$$

so that

$$
f(x)=\int^{x} \mathcal{E}\left(\mathcal{D}^{-1} \mathcal{E}\right)^{n} Q_{0} \mathrm{~d} x
$$

satisfies the right boundary conditions and $D_{x} f=\mathcal{E}\left(\mathcal{D}^{-1} \mathcal{E}\right)^{n} Q_{0}$.

To show (5.1) we proceed by induction on n. Assume $Q_{n}[\lambda m]=\lambda^{n} Q_{n}[m]$ holds. Then,

$$
\begin{aligned}
Q_{n+1}[\lambda m] & =\mathcal{D}^{-1} \mathcal{E} Q_{n}[\lambda m]=\left(1-D_{x}^{2}\right)^{-1} D_{x}^{-1}\left(\lambda m D_{x}+D_{x} \lambda m\right)\left(\lambda^{n} Q_{n}[m]\right) \\
& =\lambda^{n+1}\left(1-D_{x}^{2}\right)^{-1} D_{x}^{-1}\left(m D_{x}+D_{x} m\right) Q_{n}[m]=\lambda^{n+1} Q_{n+1}[m]
\end{aligned}
$$

Since (5.1) obviously holds for $n=0$, this shows (5.1) for all $n \geqslant 0$ and completes the proof.

Lemma 6 shows existence of Q_{n} such that

$$
Q_{0}=\delta H_{0}, \quad \mathcal{E} Q_{n}=\mathcal{D} Q_{n+1}, \quad n \geqslant 0
$$

so that we may define

$$
\begin{equation*}
H_{n}[m]=\frac{1}{n+1} \int m Q_{n}[m] \mathrm{d} x, \quad n=0,1,2, \ldots \tag{5.2}
\end{equation*}
$$

If the Fréchet derivative $D_{Q_{n}}$ were self-adjoint we would proceed just like in the case of the lowering to deduce that $\delta H_{n}[m]=Q_{n}[m]$. This would show that raising is unobstructed. However, since the Q_{n} s are non-local expressions for $n \geqslant 3$, we cannot immediately apply lemma 1 or the theory from [20] to infer self-adjointness. This technical problem is usually ignored.

At any rate, if there is a functional H_{n} with variational derivative $\delta H_{n}=Q_{n}$, then $D_{Q_{n}}=D_{\delta H_{n}}$ is self-adjoint so that H_{n} is given by (5.2). We can therefore state the following theorem.

Theorem 2. Whenever the functionals H_{n} exist, it holds that

$$
H_{n}[\lambda m]=\lambda^{n+1} H_{n}[m], \quad n=0,1,2, \ldots,
$$

and

$$
H_{n}[m]=\frac{1}{n+1} \int m \delta H_{n}[m] \mathrm{d} x, \quad n=0,1,2, \ldots
$$

6. Algorithm

In this section, we use the previously derived identities to obtain a constructive algorithm for computing the H_{n} s.

6.1. Lowering

In view of theorem 1, we have

$$
\begin{equation*}
H_{-n}[m]=\frac{1}{3 / 2-n} \int m \delta H_{-n}[m] \mathrm{d} x, \quad n=1,2, \ldots \tag{6.1}
\end{equation*}
$$

Using that

$$
\delta H_{-n}[m]=\mathcal{E}^{-1} \mathcal{D} \delta H_{-n+1}[m]=-\frac{1}{2 \sqrt{m}} D_{x}^{-1}\left(\frac{\mathcal{D} \delta H_{-n+1}[m]}{\sqrt{m}}\right)
$$

we obtain

$$
\begin{equation*}
\delta H_{-n}[m]=\frac{1}{2 \sqrt{m}} \int_{0}^{x} \frac{\left(D_{x}-D_{x}^{3}\right) \delta H_{-n+1}[m]}{\sqrt{m}} \mathrm{~d} \xi \tag{6.2}
\end{equation*}
$$

Formula (6.2) provides an explicit recursive algorithm for the computation of the $\delta H_{-n} \mathrm{~s}$. Once $\delta H_{-n}[m]$ is known, $H_{-n}[m]$ is obtained from (6.1). To exemplify the approach we construct the conservation laws H_{-3} and H_{-4}.

We first use the integration by parts formula $D_{x}^{-1}\left(u v_{x}\right)=u v-D_{x}^{-1}\left(u_{x} v\right)$ twice in the expression

$$
\delta H_{-3}[m]=\frac{1}{2 \sqrt{m}} D_{x}^{-1}\left(\frac{\left(D_{x}-D_{x}^{3}\right) \delta H_{-2}[m]}{\sqrt{m}}\right)
$$

to get

$$
\begin{aligned}
\delta H_{-3}[m]= & \frac{1}{2 \sqrt{m}}\left[\frac{1}{\sqrt{m}}\left(1-D_{x}^{2}\right) \delta H_{-2}[m]+\left(\frac{1}{\sqrt{m}}\right)_{x}\left(\delta H_{-2}[m]\right)_{x}\right. \\
& \left.-D_{x}^{-1}\left(\left(\frac{1}{\sqrt{m}}\right)_{x} \delta H_{-2}[m]+\left(\frac{1}{\sqrt{m}}\right)_{x x}\left(\delta H_{-2}[m]\right)_{x}\right)\right] .
\end{aligned}
$$

Now since

$$
\delta H_{-2}[m]=\frac{1}{8 m^{3 / 2}}+\frac{m_{x x}}{8 m^{5 / 2}}-\frac{5 m_{x}^{2}}{32 m^{7 / 2}},
$$

a long but straightforward ${ }^{3}$ computation yields

$$
\begin{aligned}
\delta H_{-3}[m]= & \frac{3}{64 m^{5 / 2}}+\frac{5 m_{x x}}{32 m^{7 / 2}}-\frac{35 m_{x}^{2}}{128 m^{9 / 2}}-\frac{m_{x x x x}}{16 m^{7 / 2}} \\
& +\frac{7 m_{x} m_{x x x}}{16 m^{9 / 2}}-\frac{231 m_{x}^{2} m_{x x}}{128 m^{11 / 2}}+\frac{21 m_{x x}^{2}}{64 m^{9 / 2}}+\frac{1155 m_{x}^{4}}{1024 m^{13 / 2}} .
\end{aligned}
$$

From (6.1) we get

$$
\begin{aligned}
H_{-3}[m]=- & \frac{2}{3} \int m \delta H_{-3}[m] \mathrm{d} x=-\int\left(\frac{1}{32 m^{3 / 2}}+\frac{5 m_{x x}}{48 m^{5 / 2}}-\frac{35 m_{x}^{2}}{192 m^{7 / 2}}-\frac{m_{x x x x}}{24 m^{5 / 2}}\right. \\
& \left.+\frac{7 m_{x} m_{x x x}}{24 m^{7 / 2}}-\frac{77 m_{x}^{2} m_{x x}}{64 m^{9 / 2}}+\frac{7 m_{x x}^{2}}{32 m^{7 / 2}}+\frac{385 m_{x}^{4}}{512 m^{11 / 2}}\right) \mathrm{d} x .
\end{aligned}
$$

After some integrations by parts, we arrive at

$$
H_{-3}[m]=-\int\left(\frac{1}{32 m^{3 / 2}}+\frac{5 m_{x}^{2}}{64 m^{7 / 2}}+\frac{m_{x x}^{2}}{32 m^{7 / 2}}+\frac{35 m_{x}^{4}}{512 m^{11 / 2}}\right) \mathrm{d} x .
$$

Repeating the same steps again with $\delta H_{-2}[m]$ replaced by $\delta H_{-3}[m]$, we obtain

$$
\begin{aligned}
\delta H_{-4}[m]= & \frac{5}{256 m^{7 / 2}}+\frac{1419 m_{x} m_{x x} m_{x x x}}{128 m^{13 / 2}}+\frac{m_{x x x x x x}}{32 m^{9 / 2}}-\frac{7 m_{x x x x}}{64 m^{9 / 2}}-\frac{425425 m_{x}^{6}}{16384 m^{19 / 2}} \\
& +\frac{15015 m_{x}^{4}}{4096 m^{15 / 2}}+\frac{35 m_{x x}}{256 m^{9 / 2}}-\frac{315 m_{x}^{2}}{1024 m^{11 / 2}}+\frac{189 m_{x x}^{2}}{256 m^{11 / 2}}+\frac{671 m_{x x}^{3}}{256 m^{13 / 2}}-\frac{69 m_{x x x}^{2}}{128 m^{11 / 2}} \\
& -\frac{35607 m_{x}^{2} m_{x x}^{2}}{1024 m^{15 / 2}}+\frac{255255 m_{x}^{4} m_{x x}}{4096 m^{17 / 2}}-\frac{2145 m_{x}^{3} m_{x x x}}{128 m^{15 / 2}}+\frac{825 m_{x}^{2} m_{x x x x}}{256 m^{13 / 2}} \\
& -\frac{2541 m_{x}^{2} m_{x x}}{512 m^{13 / 2}}-\frac{57 m_{x x} m_{x x x x}}{64 m^{11 / 2}}+\frac{63 m_{x} m_{x x x}}{64 m^{11 / 2}}-\frac{27 m_{x} m_{x x x x x}}{64 m^{11 / 2}} .
\end{aligned}
$$

${ }^{3}$ To find the primitive function of

$$
R[m]=\left(\frac{1}{\sqrt{m}}\right)_{x} \delta H_{-2}[m]+\left(\frac{1}{\sqrt{m}}\right)_{x x}\left(\delta H_{-2}[m]\right)_{x}
$$

we first compensate for the highest order derivatives and then progressively work our way down. Since $R[m]$ is the total x-derivative of a differential function by theorem 1 , this procedure will stop and produce the right result.

Hence, (6.1) gives after integrating by parts

$$
\begin{aligned}
H_{-4}[m]=- & \int\left(\frac{1}{128 m^{5 / 2}}+\frac{35 m_{x}^{2}}{512 m^{9 / 2}}+\frac{7 m_{x x}^{2}}{128 m^{9 / 2}}+\frac{m_{x x x}^{2}}{64 m^{9 / 2}}-\frac{105 m_{x}^{2} m_{x x}}{1024 m^{11 / 2}}\right. \\
& \left.+\frac{m_{x x}^{3}}{256 m^{11 / 2}}+\frac{21 m_{x} m_{x x} m_{x x x}}{128 m^{11 / 2}}+\frac{5005 m_{x}^{4} m_{x x}}{12288 m^{15 / 2}}\right) \mathrm{d} x
\end{aligned}
$$

These computations, although very laborious, could clearly be continued to produce explicit expressions for H_{-5}, H_{-6}, etc.

6.2. Raising

By theorem 2 we have

$$
\begin{equation*}
H_{n}[m]=\frac{1}{n+1} \int m \delta H_{n}[m] \mathrm{d} x, \quad n=0,1,2, \ldots \tag{6.3}
\end{equation*}
$$

Since

$$
\delta H_{n}[m]=\mathcal{D}^{-1} \mathcal{E} \delta H_{n-1}[m]=\left(1-D_{x}^{2}\right)^{-1} D_{x}^{-1}\left(m D_{x}+D_{x} m\right) \delta H_{n-1}[m],
$$

we find that

$$
\delta H_{n}[m]=\left(1-D_{x}^{2}\right)^{-1} \int_{0}^{x}\left(2 m\left(\delta H_{n-1}[m]\right)_{x}+m_{x} \delta H_{n-1}[m]\right) \mathrm{d} \xi
$$

Moreover,

$$
\left(1-D_{x}^{2}\right)^{-1} f(x)=(p * f)(x)=\int p(x-y) f(y) \mathrm{d} y
$$

where, if we are on the line,

$$
p(x)=\frac{1}{2} \mathrm{e}^{-|x|}, \quad x \in \mathbb{R},
$$

or

$$
p(x)=\frac{\cosh (1 / 2-x)}{2 \sinh 1 / 2}, \quad x \in[0,1)
$$

for the period one case. Therefore,

$$
\begin{equation*}
\delta H_{n}[m]=\int p(x-y) \int_{0}^{y}\left(2 m\left(\delta H_{n-1}[m]\right)_{x}+m_{x} \delta H_{n-1}[m]\right) \mathrm{d} \xi \mathrm{~d} y . \tag{6.4}
\end{equation*}
$$

This formula gives a recursive scheme to compute the $\delta H_{n} \mathrm{~s}$. Since the functionals become non-local for $n \geqslant 3$, the algorithm does not produce as explicit formulae as in the case of lowering. Nevertheless, starting with for example $\delta H_{2}[m]=\left(1-D_{x}^{2}\right)^{-1}\left(\frac{3}{2} u^{2}-\frac{1}{2} u_{x}^{2}-u u_{x x}\right)$, the scheme can be implemented numerically to yield $\delta H_{3}, \delta H_{4}$, etc. Once $\delta H_{n}[m]$ is known, the value of $H_{n}[m]$ is obtained from (6.3). Note that this last step assumes the existence of the functionals $H_{n}[m], n \geqslant 4$, even though this was never rigorously proved (cf the remark at the end of section 5).

Acknowledgment

The author thanks the referees for very valuable remarks.

References

[1] Beals R, Sattinger D and Szmigielski J 1998 Acoustic scattering and the extended Korteweg-de Vries hierarchy Adv. Math. 40 190-206
[2] Camassa R and Holm D 1993 An integrable shallow water equation with peaked solitons Phys. Rev. Lett. 71 1661-4
[3] Constantin A 1998 On the inverse spectral problem for the Camassa-Holm equation J. Funct. Anal. 155 352-63
[4] Constantin A 2000 Existence of permanent and breaking waves for a shallow water equation: a geometric approach Ann. Inst. Fourier (Grenoble) 50 321-62
[5] Constantin A 2001 On the scattering problem for the Camassa-Holm equation Proc. R. Soc. Lond. 457 953-70
[6] Constantin A 1997 The Hamiltonian structure of the Camassa-Holm equation Exposition. Math. 15 53-85
[7] Constantin A and Escher J 1998 Wave breaking for nonlinear nonlocal shallow water equations Acta Math. 181 229-43
[8] Constantin A and Escher J 1998 Global existence and blow-up for a shallow water equation Ann. Sci. Norm. Sup. Pisa 26 303-28
[9] Constantin A and Kolev B 2002 On the geometric approach to the motion of inertial mechanical systems J. Phys. A: Math. Gen. 35 R51-79
[10] Constantin A and Kolev B 2003 Geodesic flow on the diffeomorphism group of the circle Comment. Math. Helv. 78 787-804
[11] Constantin A and McKean H 1999 A shallow water equation on the circle Commun. Pure Appl. Math. 52 949-82
[12] Dai H 1998 Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod Acta Mech. 127 193-207
[13] Fuchssteiner B and Fokas A 1981 Symplectic structures, their Bäcklund transformation and hereditary symmetries Physica D 447-66
[14] Fisher M and Schiff J 1999 The Camassa Holm equation: conserved quantities and the initial value problem Phys. Lett. A 259 371-6
[15] Gesztesy F and Holden H 2003 Algebro-geometric solutions of the Camassa-Holm hierarchy Rev. Mat. Iberoamericana 19 73-142
[16] Lenells J 2002 The scattering approach for the Camassa-Holm equation J. Nonlinear Math. Phys. 9 389-93
[17] Lenells J 2004 Traveling wave solutions of the Camassa-Holm equation J. Diff. Eqns at press
[18] Li Y and Olver P 2000 Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation J. Diff. Eqns. 162 27-63
[19] Misiolek G 1998 A shallow water equation as a geodesic flow on the Bott-Virasoro group J. Geom. Phys. 24 203-8
[20] Olver P 1993 Application of Lie Groups to Differential Equations 2nd edn (New York: Springer)
[21] Reyes E 2002 Geometric integrability of the Camassa-Holm equation Lett. Math. Phys. 59 117-31

